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SEPARATION SCIENCE AND TECHNOLOGY, 13(9), pp. 753-766, 1978 

Momentum-Balance Aspects of Free-Settling Theory. 
111. Transient Compression Resistance 

D. C. DIXON 
SCHOOL OF CHEMICAL ENGINEERING 

UNIVERSITY OF NEW SOUTH WALES 
KENSINGTON, N.S.W. 2033, AUSTRALIA 

Abstract 

The previous analysis of free settling is extended by considering situations 
involving concentration gradients in the free-settling zone. It is shown that 
anomalies which arise in the theory can be removed if the normal concept of 
a free-settling suspension is modified. This involves recognizing that, even when 
the flocs are not in contact, a suspension will exhibit a transient resistance to 
concentration change. 

I NTRODUCTIO N 

A previous discussion of free-settling theory ( I ,  2) has led to con- 
clusions which are contrary to some previously accepted ones. The present 
discussion further develops the argument so as to include more general 
situations. 

Since there are some differences in the precise meaning of the term 
“free settling” among different writers, an explanation of its use here is 
required. For a given suspension (or “sludge” or “slurry”), particle 
concentration divides into two ranges, “free settling” and “compression,” 
and the “critical concentration” is the boundary between the two. At 
the critical concentration the flocs (or “particles” in an unflocculated 
suspension) just touch each other. Below this concentration (i.e., in the 
free-settling range) the flocs do not exert any forces on each other, and 
so cannot transmit a compressive stress. Above the critical concentration 
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754 DlXON 

(i.e., in the compression range) the flocs do exert forces on each other 
and, to increase the concentration above the critical, compressive stress 
must be applied to the particle phase. In the free-settling range the particles 
are subject to two forces only; the gravitational force (allowing for 
buoyancy) and the drag force due to relative motion between particles 
and fluid. In the compression range a compressive stress acts between 
the particles, in addition to the gravitational and drag forces, and its 
gradient is an additional factor which affects the motion of the particles. 

In discussing batch settling of a suspension, starting with a uniform 
concentration in the free-settling range ( I ) ,  the conclusion reached previ- 
ously is that no concentration gradient develops in the free-settling zone. 
Rather, a concentration gradient can only develop in the compression 
zone (the sediment), and throughout the process there is a concentration 
and velocity discontinuity between the sediment zone and the free-settling 
zone, the latter remaining at the initial concentration. As particles pass 
through this interface, they are retarded by impact with the top of the 
sediment, and they jump to the lowest compression-range concentration 
(the critical concentration), which is the concentration at the top of the 
sediment. 

The same arguments applied to steady-state continuous thickening 
(2) show that, contrary to previously accepted concepts, there is no 
thickening-zone capacity limitation associated with the free-settling 
concentration range, the particles thickening to the critical concentration 
as they strike the top of the sediment. This process is not affected by the 
relative positions of the “operating” and “flux” lines in the free-settling 
range. Further thickening occurs as the particles pass downward through 
the sediment toward the sludge outlet due to the increasing compressive 
stress exerted by the particles above. Thickening as far as the critical 
concentration requires no compressive stress because the suspension ex- 
hibits no resistance to compression in the free-settling range, and this 
statement led to the comment (2) that the concept of free settling (as 
defined above) is itself an approximation. 

When more complicated free-settling situations are considered, in- 
volving nonuniform initial concentration, it is found that anomalies occur 
in the theory, and these are discussed below. The purpose of this paper 
is to show that it is necessary to acknowledge that a slurry will exhibit 
a resistance (however small and transient) to change in concentration, 
no matter how small the concentration. Recognition of this fact removes 
the anomalies alluded to above and increases the overall unity of thicken- 
ing theory. 
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FREE-SElTLING THEORY. 111 755 

ANOMALIES IN FREE-SETTLING THEORY 

Free Settling with an Initially Nonuniform Concentration 

The writer has previously argued ( I )  that sedimentation of an initially 
uniform suspension, starting in free settling, will always be “Type I”; 
that is, no concentration gradient develops in the free-settling zone. This 
is contrary to the long-accepted Kynch analysis (3), and the immediate 
question which arises is: “What happens when the suspension is initially 
in free settling, but with nonuniform concentration?” That is, if one 
considers the case where a concentration gradient is present initially, 
how do various concentration planes move through the suspension, and 
how do these movements compare with those predicted by Kynch’s 
theory? 

However, when one attempts to answer this question, an unexpected 
(by the writer, at least) difficulty arises. After setting up the equations 
for the nonuniform free-settling zone, one finds that there are insufficient 
boundary conditions available. Thus the equations cannot be solved and 
the question posed above cannot be answered. 

As in previous discussions, an unnecessary complication can be omitted 
by assuming that the sediment formed during the process is incompressible, 
and so is uniform at the critical concentration, and all the particles in it 
are stationary. The material- and momentum-balance equations for the 
free-settling zone (z = 0) are (1): 

a U  (g) = 

and 

These are Lagrangian equations, based on particle motions. If the top 
surface of the free-settling zone is taken as datum (s = 0), then the lower 
boundary of the zone is moving (s = variable). At the lower boundary, 
particles pass from the free-settling zone into the sediment zone, as they 
are retarded by impact with the sediment. In general, there is a concentra- 
tion (and velocity) discontinuity at the free-settling/sediment interface. 

Since Eqs. (1) and (2) are spatially first order in Y, a Y boundary condi- 
tion is required. However, no such boundary condition is available. 
The velocity is not known anywhere in the free-settling zone. When an 
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756 DIXON 

initially uniform suspension is considered (as in previous discussions), 
this difficulty does not arise. In that case (du/ds), is zero, Eq. (1) does not 
have to be used, and u can be obtained as a function of time from Eq. (2) .  

The reason for the lack of the necessary boundary condition in the 
present problem is the discontinuity at the free-settling/sediment interface. 
On the underside of this discontinuity, velocity and concentration are 
known, but on the upper side neither is known because the free-settling 
suspension can jump from any concentration and velocity to the critical 
concentration. Neither velocity nor concentration is known at  either end 
of the free-settling zone. The ability to jump in concentration is due to 
the lack of compression resistance in the free-settling range. 

Fluidization of a Free-Settling Suspension 

It seems that the boundary-condition difficulty found in the preceding 
example can be avoided by considering the behavior of a nonuniform, 
free-settling suspension in the presence of a steady, uniform liquid up- 
flow, introduced through a porous container bottom. The upflow rate 
can be chosen so that at steady state the concentration is uniform at a 
value which is less than the critical concentration. That is, the particles 
are supported entirely by liquid drag, and no compressive stress exists. 
Then, by considering the suspension to start with nonuniform concentra- 
tion a little displaced from the steady-state concentration, free settling of 
a nonuniform suspension is obtained without the formation of a sediment. 

In this situation the necessary boundary condition on u is available. 
At the bottom of the column, on the porous support plate, the particle 
velocity is zero. Thus, using the same description of the suspension and 
two different, but both physically realistic, circumstances, the equations 
and boundary conditions are available for one case but not for the other. 
This is a contradictory result. 

However, the present example, while not suffering from lack of a 
boundary condition, presents a different difficulty. The solution of the 
equations indicates that the upflow system is always unstable, but this 
does not accord with experimental evidence. While some fluidized systems 
exhibit behavior which could be the result of instability (“aggregative” 
fluidization), not all systems exhibit such behavior, and, in particular, 
liquid-fluidized systems usually appear to be quite stable (4) .  [While 
Eqs. (1) and (2) cannot be solved analytically, in general, linearized 
analytical solutions can be obtained, and are sufficient to indicate the 
stability of the system. The instability of the linearized solutions is shown 
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FREE-SETTLING THEORY. 111 757 

in the Appendix. The analytical procedure used is similar to, and reaches 
the same conclusion as, those of Jackson ( 4 )  and Pigford and Baron (4, 
but it makes use of the available boundary condition for the system.] 

P E R M A N E N T  AND T R A N S I E N T  
COMPRESSIVE STRESSES 

The anomalies in free-settling theory, illustrated by the two examples 
above, are removed when a transient resistance to compression is included 
in the analysis. This is shown below, after discussing the factors which 
affect the interparticle compressive stress in a suspension. 

The usual concept is that the critical concentration marks the start of 
compressive stress action, and, therefore, of resistance to compression. 
The critical concentration is envisaged as the concentration at which the 
flocs come into mechanical contact. To produce concentrations greater 
than the critical, compressive stress must be applied, and the simplest 
assumption to make is that the stress required depends only on the 
concentration (for a given slurry). Thus, below the critical concentration 
the stress is zero while above the critical concentration the stress is a func- 
tion of concentration. (In terms of cause and effect, the concentration is 
a function of stress, rather than the other way around, but this is no 
different analytically.) 

However, it is clear that the concentration achieved in compressing 
a sludge does not depend only on the applied stress. It will also depend 
in a complex way on numerous factors which determine the geometrical 
arrangement of the particles. For this reason, care is taken to minimize 
disturbance of the samples in compression testing of soils (6), since this 
affects the results. The possible large effect of particle arrangement is 
easily demonstrated by considering the stacking of spherical particles. 

Equal-sized spheres can be stacked with porosity of 0.476 in cubical 
packing and 0.260 in rhombohedral packing, and can also be stacked 
stably at a porosity at least as high as 0.875 (7). If two columns containing 
equal weights (say 10 kg) of the same hard, equal-sized spheres are 
considered, one stacked in cubical packing and one in rhombohedral, 
the compressive stress acting at the bottom of each column will be the 
same (neglecting wall effects). However, the particle concentrations are 
very different, and clearly the concentration is virtually independent of 
the stress (being affected very slightly by the distortion of the spheres 
under the weight above), depending almost entirely on the packing 
arrangement. 
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758 DIXON 

However, in the case of flocculated suspensions the individual entities 
(the flocs) are much more compressible than in the case of separate hard 
particles, and the effect of variations in packing arrangement will be 
greatly reduced if the packing process is “randomized” in some sense. 
The compression of flocs does not involve distortion of the individual 
particles to any great extent, but rather overcoming the interparticle 
forces in moving the particles closer together. Thus, at least until the 
particles are approaching the close-packed condition, it is to be expected 
that the concentration achieved will depend primarily on the stress applied, 
provided that variations in packing can be minimized. This is borne out 
by experimental sedimentation data (8-10). 

It is to be expected that slow stirring of a suspension is necessary 
to prevent bridge formation and so reduce packing variation effects, 
and this is shown by the results of Dell and Keleghan (9). Shannon 
et al. (ZI), settling glass spheres, only obtained a reproducible final con- 
centration when the cylinder was vibrated by rapping the side. On the 
other hand, Shin and Dick (10) found concentration to be a function of 
stress even in an unstirred suspension. Nevertheless, it seems clear that, 
to obtain consistent results, it is necessary to avoid as far as possible effects 
due to variations in packing arrangement, and that a large part of the 
scatter in experimental results is due to such effects. 

Thus, while recognizing its limitations, the assumption that concentra- 
tion achieved depends only on stress applied is usually adopted. However, 
there is a further factor involved in the compression process, namely a 
transient compression resistance, depending on the rate of change of 
concentration. Since no process can occur instantaneously, application 
of stress to a portion of sludge will not instantaneously produce the 
corresponding concentration. There will be a time delay, or dynamic effect, 
involved in the process. 

While it i s  not essential to the present argument to determine the 
source of the transient compression resistance, at least one effect of this 
type is easily identified. As particles are moved closer together (which is 
what happens during compression), liquid is “squeezed out” from between 
them, and the flow resistance of the liquid gives rise to a force resisting 
the compression. This is easily seen in the simple case of two spheres 
moving vertically toward each other with equal velocities in a stationary 
liquid. 

Clearly, each sphere experiences an equal force, upward on the upper, 
and downward on the lower. That is, a repulsive force acts between the 
spheres. [An analytical expression for this force can be obtained for 
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FREE-SETTLING THEORY. 111 759 

creeping flow (12). The similar situation involving two disks can also be 
analyzed (13).] This force is distinct from the usual drag force due to 
relative motion of particles and liquid. In the present case the velocity of 
the two spheres, taken together, is zero, the net force is zero, and the drag 
is zero. If the two spheres were moving with unequal velocities, each would 
experience a drag force (the same magnitude and sign for each) depending 
on their average velocity, and a repulsive force (the same magnitude 
but opposite signs) depending on their velocity of approach to each 
other. 

In a suspension or sludge the situation is obviously much more complex, 
but nevertheless it is clear that qualitatively the same effect will occur. 
The slurry will exhibit a transient resistance to compression which de- 
pends on the rate of increase in concentration (and on the concentration 
itself and other slurry properties). Thus, at each point in the suspension, 
the compressive stress can be split into two parts, the “permanent” or 
“static” component, which depends on the concentration, and the 
“transient” or “dynamic” component, which depends on the rate of 
change of concentration, and is zero when the rate of change of con- 
centration is zero. That is, 

The static stress, z,, is zero below the critical concentration, but the 
dynamic stress exists at all concentrations when the concentration is 
changing. Obviously, the dynamic compression resistance will be very 
small when the particles are far apart, but, small or not, it seems certain 
that it exists. 

Thus the definitions of “free settling” and “compression” need to be 
reconsidered. The critical concentration js the concentration below which 
no permanent or static stress acts. Free settling is settling at concentrations 
below the critical, but it no longer implies absence of compressive stress. 
In free settling transient compressive stresses can act. I n  compression, 
both permanent* and transient compressive stresses act. 

*In referring to the “static” or “permanent” component of the compressive stress, 
it  is not implied, of course, that, on removing the applied stress, the sludge returns to 
the critical concentration. Especially for flocculated materials, the compression process 
is almost completely inelastic. The existence of a static stress in the compression zone 
means that, to reach a given concentration, a certain stress must be applied for sufficient 
time. Irrespective of whether this stress is subsequently removed, compression to a 
higher concentration requires application of a corresponding higher stress for sufficient 
time. 
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760 DIXON 

The existence of transient compression resistance has been recognized 
by workers in SJil Mechanics (14). One of the simplest cases to analyze 
is one-dimensional consolidation by compressing a layer of soil between 
two porous plates. As the soil compresses, liquid expelled from the pores 
flows out through the porous plates. 

If this process is analyzed ( 1 4 ,  ignoring dynamic compression resistance, 
one nevertheless finds that there is a time delay in the compression process. 
This is caused by the drag of the liquid as it flows out of the soil layer. 
Because of this drag, the applied load does not act immediately throughout 
the soil structure, because it is partly balanced by the liquid drag. Only 
when the consolidation is complete, and liquid flow has ceased, does the 
applied stress act throughout the soil structure. Thus, in this analysis, 
the time delay is due to a delay in application of the applied compressive 
stress to each plane in the solids structure rather than to a delay in the 
response of the structure to the applied stress. 

However, in experimental tests on soils in which measurements are 
made of the liquid pressure in the pores, it is found in many cases that, 
even after the liquid pressure has dropped virtually to zero throughout, 
indicating that the applied stress acts throughout the particle structure, 
considerable further consolidation occurs (“secondary consolidation”). 
Taylor (14) pointed out that this indicates a transient effect in the com- 
pression process (“plastic time lag” and “plastic structural resistance to 
cornpression”). 

A similar situation exists in analyzing the more complex process of 
gravity consolidation of a sludge (8). Even neglecting dynamic com- 
pression effects, the compression process still exhibits a time delay due 
to the transient support of part of the weight of the particles by the 
liquid displaced upward during the compression process. 

THEORETICAL SIGNIFICANCE OF TRANSIENT 
CO M PRESS1 0 N RESISTANCE 

Once the existence of compression resistance in “free” settling is ac- 
cepted, the anomalies in the theory, demonstrated above, disappear. 
The existence of compression resistance means that particles cannot pass 
through a concentration discontinuity because this would mean doing 
work at an infinite rate in compressing the suspension. (In the original 
model of free settling, no work is required for compression, so that sudden 
jumps in concentration are possible.) Thus, in the first example, there 
will be no discontinuity between free settling and compression zones, 
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FREE-SETTLING THEORY. 111 76 I 

the whole of the suspension being in compression. The boundary con- 
ditions are zero velocity on the container bottom and fixed concentration 
at the top of the suspension (since the compressive stress is zero there, 
due to the absence of particles above to exert a stress). 

In the second (fluidization) example, inclusion of dynamic stress in the 
equations removes the instability, as shown in the Appendix. [Although 
the complete answer has perhaps still not been obtained, it seems that 
the occurrence of aggregative fluidization is, in fact, the result of in- 
stability in the flow. However, the instabilities arise from two- or three- 
dimensional effects (15, 26). The present discussion has been restricted 
to one-dimensional situations whch can be acheved by using a high 
resistance support plate and a small diameter vessel.] 

Having argued on physical grounds that all slurries will exhibit a 
transient compression resistance at all particle concentrations, and having 
shown that inclusion of transient compression resistance removes anoma- 
lies in the theory of free settling, the question which now arises is whether 
it is always necessary to take the effect into account. 

In the compression concentration range, omitting dynamic stress does 
not cause theoretical difficulties, due to absence of boundary conditions 
or instability of the equation solutions. However, as shown by data for 
soils, some materials do exhibit significant transient compression effects, 
and so these should be taken into account for accurate characterization. 
Nevertheless, methods for accounting for the effect do not seem to be 
well established in Soil Mechanics. The reason for this presumably is 
that the inaccuracy in typical experimental data does not warrant the 
use of more complex theory. Inaccuracies arise due to the effect of variable 
particle packing, as discussed above, whch is a basic difficulty in fluid/ 
particle studies. The same situation applies in sludge thickening, and it 
remains to be seen whether it is necessary and practicable to take transient 
compression effects into account in data analysis and equipment design. 

In the free-settling range, transient compression effects must be taken 
into account if the changes occurring in a nonuniform suspension are 
being studied, because the equations cannot be solved otherwise. However, 
the settling of an initially uniform suspension, starting in free settling, 
is a case where the effect can be neglected. The action of the compression 
resistance is to prevent the formation of a discontinuity at the top of the 
sediment. However, since the transient resistance will certainly be very 
small in the free-settling range, a concentration gradient will only extend 
for a small distance into the initial-concentration zone. Hence, in this 
case, treating the initial suspension as free settling in the old sense, with 
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762 DlXON 

a concentration and velocity discontinuity at  the interface with the 
sediment, will be a satisfactory approximation. 

A similar approximation will be applicable in analyzing steady-state, 
continuous thickening. The depth required for thickening to f, will be 
very small and negligible, so that the analysis given previously (2) can be 
used. There is one difference, however. Whereas it was concluded previ- 
ously that the operating line must lie below the flux line in the range 
from fc to f,, but not necessarily in the range ff to ,L, the existence of 
compression resistance at all concentrations indicates that the operating 
line must lie below the flux line in the whole range ff tof,. 

CONCLUSIONS 

Recognition that slurries exhibit an at  least transient resistance to 
compression at all concentrations removes anomalies in the theory of free 
settling. Nevertheless, the effect is expected to be very small in free settling, 
and negligible in situations where the free-settling zone is of uniform 
concentration, so that the concentration gradient will be limited to a 
narrow zone above the sediment. In compression, transient compression 
resistance is usually neglected, compared to the static resistance, but it 
remains to be determined if this is always a satisfactory approximation. 

APPENDIX. FLUIDIZATION STABILITY ANALYSIS 

Dynamic Stress Omitted 

Using a Lagrangian spatial coordinate, s, based on the particle motion, 
and dilution, r,  rather than particle volume fraction, the one-dimensional 
material- and momentum-balance equations are ( I )  

and Eq. (2), and the boundary condition is u = 0 at  s = S.  
In the situation being considered, the liquid upflow is held constant, 

so that volumetric flux, + t ,  is constant with respect to both t and s. Thus 
u can be replaced by u in Eqs. (4) and (2). At steady state at the given 
upflow rate, u and r are uniform and equal to U and ?, respectively. Line- 
arizing Eqs. (4) and (2) for small deviations u' and r' of u and r from 
the steady-state values gives 
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FREE-SETTLING THEORY. 111 763 

and 

($)s = -ad  + br' 

where a and b are positive constants. Taking Laplace transforms with 
respect to t (17): 

p R  - r'(0,s) = dU/ds 

p U  = -aU -+ bR 

taking the initial condition to be particles stationary (u = ii) but dilution 
displaced from the steady-state value. Eliminating R between Eqs. (7) 
and (8): 

(7) 

(8) 

and 

- b  dU br'(0, s) - + u =  
P(P + a> ds P ( P  + 4 (9) 

The solution of this ordinary differential equation depends on the initial 
concentration-deviation distribution, r'(0, s). The simplest case is r' = 
constant = A ,  say. The solution of Eq. (9) is then: 

satisfying the condition u' = 0 at s = S .  
The inverse Laplace transform of Eq. (10) gives the variation of u' 

as a function of s and 1. While this inversion cannot be carried out by the 
usual methods, the stability of the solution can be determined from ex- 
amination of the transform. The presence of the factor exp [ -p2(S  - s)/b] 
in the transform of U indicates poles in the right half of the complex plane 
(17) and, hence, instability. {Exp [ - p 2 ( S  - s)/b] has two infinities of 
poles on lines parallel to the real axis at infinity.) Since the equations 
are linear, this result is unaffected by the choice made of the initial con- 
centration-deviation function, r'(0, s). 

Dynamic Stress Included 

When dynamic compressive stress, T d ,  is included in the analysis, Eq. 
(2) is replaced by 
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764 DIXON 

Zd is a function of r and (&/at), [ = (aujas),]. Since it is zero when (&/at), 
is zero, and (drjdt), is zero at steady state, the linearized exprzssion for 
zd takes the form 

where c is a positive constant. [Although it is not relevant to the present 
argument, Eq. (12) is, in fact, the expected general form of the equation 
for zd, except that c is a function offrather than a constant. This is the 
form which has been suggested in Soil Mechanics (18).] 

Thus the linearized equations are Eq. (5) and 

($)s = - a d  + br‘ + c ( 7 2Jt 
The additional boundary condition required is (au’jds), = 0 at s = 0 
(constant concentration at the top of the suspension). 

Proceeding as above, the equation obtained after taking Laplace 
transforms and eliminating R is 

br’(0, s)  
(14) 

- c  d2U b dU - + u =  --- 
p + a ds2 p ( p  + a) a’s P(P + a) 

For r’(0, s) = A = constant, the solution for U, satisfying the two 
boundary conditions, is 

1 bA - mIernzs - mzernIs 
m,ern2s - mzernIS U =  

P(P + 4 
where 

It is not difficult to show that this expression for U contains no poles 
in the right half of the complex plane, and so the solution is stable. 

SYMBOLS 

The positive direction is downward for all vector quantities. 

a 
A 
b 

linearization constant = - (d~, , /du) , /p ,  sec- ’ 
amplitude of initial dilution disturbance, dimensionless 
linearization constant = (aFb/ar),/p, m/secz 
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c 

f 
f, 
ff 
f, 

Fo 

Fd 

9 
m1, m2 

P 
r 
r 

r’ 
R 

- 

S 

S 

2 
U 

- 
U 

U’ 
U 
U 

Greek 

P 
PI 
z 

‘ts 

zd 

A 

linearization constant = - (dz,/a(dr/dt),),/p, m2/sec 
particle concentration, volume fraction, dimensionless 
critical particle concentration 
feed particle concentration 
underflow particle concentration 
liquid drag force on the particles, per unit volume of particles, 
N/m3 
g ( p  - pL) = net gravitational force, per unit volume of 
particles, N/m3 
acceleration due to gravity, m/sec2 
expression involved in solution of Eq. (14), m-I 
Laplace transform variable, sec- 
particle dilution = l / f ;  dimensionless 
steady-state value of r 
deviation of r from 7 
Laplace transform of r‘, sec 
volume of particles per unit cross-sectional area, below a 
reference plane moving with the particles, m 
total volume of particles in the system per unit cross-sectional 
area, m 
time, sec 
velocity of particles, relative to slurry volume-average velocity 
= LI - +*, m/sec 
steady-state value of u 
deviation of u from U 
Laplace transform of u’, m 
velocity of particles, relative to container, mfsec 

particle density, kg/m3 
liquid density, kg/m3 
interparticle compressive stress, based on total cross-sectional 
area, N/m2 
static component of ‘t 
dynamic component of z 
total volumetric flux = volume-average velocity, m/sec 
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