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Momentum-Balance Aspects of Free-Settling Theory.
l1l. Transient Compression Resistance

D. C. DIXON

SCHOOL OF CHEMICAL ENGINEERING
UNIVERSITY OF NEW SOUTH WALES
KENSINGTON, N.S.W. 2033, AUSTRALIA

Abstract

The previous analysis of free settling is extended by considering situations
involving concentration gradients in the free-settling zone. It is shown that
anomalies which arise in the theory can be removed if the normal concept of
a free-settling suspension is modified. This involves recognizing that, even when
the flocs are not in contact, a suspension will exhibit a transient resistance to
concentration change.

INTRODUCTION

A previous discussion of free-settling theory (/, 2) has led to con-
clusions which are contrary to some previously accepted ones. The present
discussion further develops the argument so as to include more general
situations.

Since there are some differences in the precise meaning of the term
“free settling” among different writers, an explanation of its use here is
required. For a given suspension (or ‘“‘sludge” or “‘slurry”), particle
concentration divides into two ranges, “free settling’”” and “‘compression,”
and the “critical concentration” is the boundary between the two. At
the critical concentration the flocs (or “particles” in an unflocculated
suspension) just touch each other. Below this concentration (i.e., in the
free-settling range) the flocs do not exert any forces on each other, and
so cannot transmit a compressive stress. Above the critical concentration

753
Copyright © 1978 by Marcel Dekker, Inc. All Rights Reserved. Neither this work nor
any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any informa-
tion storage and retrieval system, without permission in writing from the publisher.



14: 04 25 January 2011

Downl oaded At:

754 DIXON

(i.e., in the compression range) the flocs do exert forces on each other
and, to increase the concentration above the critical, compressive stress
must be applied to the particle phase. In the free-settling range the particles
are subject to two forces only; the gravitational force (allowing for
buoyancy) and the drag force due to relative motion between particles
and fluid. In the compression range a compressive stress acts between
the particles, in addition to the gravitational and drag forces, and its
gradient is an additional factor which affects the motion of the particles.

In discussing batch settling of a suspension, starting with a uniform
concentration in the free-settling range (/), the conclusion reached previ-
ously is that no concentration gradient develops in the free-settling zone.
Rather, a concentration gradient can only develop in the compression
zone (the sediment), and throughout the process there is a concentration
and velocity discontinuity between the sediment zone and the free-settling
zone, the latter remaining at the initial concentration. As particles pass
through this interface, they are retarded by impact with the top of the
sediment, and they jump to the lowest compression-range concentration
(the critical concentration), which is the concentration at the top of the
sediment.

The same arguments applied to steady-state continuous thickening
{2) show that, contrary to previously accepted concepts, there is no
thickening-zone capacity limitation associated with the free-settling
concentration range, the particles thickening to the critical concentration
as they strike the top of the sediment. This process is not affected by the
relative positions of the “operating” and “flux” lines in the free-settling
range. Further thickening occurs as the particles pass downward through
the sediment toward the sludge outlet due to the increasing compressive
stress exerted by the particles above. Thickening as far as the critical
concentration requires no compressive stress because the suspension ex-
hibits no resistance to compression in the free-settling range, and this
statement led to the comment (2) that the concept of free settling (as
defined above) is itself an approximation.

When more complicated free-settling situations are considered, in-
volving nonuniform initial concentration, it is found that anomalies occur
in the theory, and these are discussed below. The purpose of this paper
is to show that it is necessary to acknowiedge that a slurry will exhibit
a resistance (however small and transient) to change in concentration,
no matter how small the concentration. Recognition of this fact removes
the anomalies alluded to above and increases the overall unity of thicken-
ing theory.
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ANOMALIES IN FREE-SETTLING THEORY

Free Settling with an Initially Nonuniform Concentration

The writer has previously argued (/) that sedimentation of an initially
uniform suspension, starting in free settling, will always be “Type I"’;
that is, no concentration gradient develops in the free-settling zone. This
is contrary to the long-accepted Kynch analysis (3), and the immediate
question which arises is: “What happens when the suspension is initially
in free settling, but with nonuniform concentration?” That is, if one
considers the case where a concentration gradient is present initially,
how do various concentration planes move through the suspension, and
how do these movements compare with those predicted by Kynch’s
theory?

However, when one attempts to answer this question, an unexpected
(by the writer, at least) difficulty arises. After setting up the equations
for the nonuniform free-settling zone, one finds that there are insufficient
boundary conditions available, Thus the equations cannot be solved and
the question posed above cannot be answered.

As in previous discussions, an unnecessary complication can be omitted
by assuming that the sediment formed during the process is incompressible,
and so is uniform at the critical concentration, and all the particles in it
are stationary. The material- and momentum-balance equations for the
free-settling zone (t = 0) are (1):

). (@), 0

ov
o(5) = £+ Fo @

and

These are Lagrangian equations, based on particie motions. If the top
surface of the free-settling zone is taken as datum (s = 0), then the lower
boundary of the zone is moving (s = variable). At the lower boundary,
particles pass from the free-settling zone into the sediment zone, as they
are retarded by impact with the sediment. In general, there is a concentra-
tion (and velocity) discontinuity at the free-settling/sediment interface.

Since Egs. (1) and (2) are spatially first order in v, a v boundary condi-
tion is required. However, no such boundary condition is available.
The velocity is not known anywhere in the free-settling zone. When an
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initially uniform suspension is considered (as in previous discussions),
this difficulty does not arise. In that case (0v/0s), is zero, Eq. (1) does not
have to be used, and v can be obtained as a function of time from Eq. (2).

The reason for the lack of the necessary boundary condition in the
present problem is the discontinuity at the free-settling/sediment interface.
On the underside of this discontinuity, velocity and concentration are
known, but on the upper side neither is known because the free-settling
suspension can jump from any concentration and velocity to the critical
concentration. Neither velocity nor concentration is known at either end
of the free-settling zone. The ability to jump in concentration is due to
the lack of compression resistance in the free-settling range.

Fluidization of a Free-Settling Suspension

It seems that the boundary-condition difficulty found in the preceding
example can be avoided by considering the behavior of a nonuniform,
free-settling suspension in the presence of a steady, uniform liquid up-
flow, introduced through a porous container bottom. The upflow rate
can be chosen so that at steady state the concentration is uniform at a
value which is less than the critical concentration. That is, the particles
are supported entirely by liquid drag, and no compressive stress exists.
Then, by considering the suspension to start with nonuniform concentra-
tion a little displaced from the steady-state concentration, free settling of
a nonuniform suspension is obtained without the formation of a sediment.

In this situation the necessary boundary condition on v is available.
At the bottom of the column, on the porous support plate, the particle
velocity is zero. Thus, using the same description of the suspension and
two different, but both physically realistic, circumstances, the equations
and boundary conditions are available for one case but not for the other.
This is a contradictory result.

However, the present example, while not suffering from lack of a
boundary condition, presents a different difficulty. The solution of the
equations indicates that the upflow system is always unstable, but this
does not accord with experimental evidence. While some fluidized systems
exhibit behavior which could be the result of instability (“aggregative”
fluidization), not all systems exhibit such behavior, and, in particular,
liquid-fluidized systems usually appear to be quite stable (4). [While
Egs. (1) and (2) cannot be solved analytically, in general, linearized
analytical solutions can be obtained, and are sufficieat to indicate the
stability of the system. The instability of the linearized solutions is shown
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in the Appendix. The analytical procedure used is similar to, and reaches
the same conclusion as, those of Jackson (4) and Pigford and Baron (5),
but it makes use of the available boundary condition for the system.]

PERMANENT AND TRANSIENT
COMPRESSIVE STRESSES

The anomalies in free-settling theory, illustrated by the two examples
above, are removed when a transient resistance to compression is included
in the analysis. This is shown below, after discussing the factors which
affect the interparticle compressive stress in a suspension.

The usual concept is that the critical concentration marks the start of
compressive stress action, and, therefore, of resistance to compression.
The critical concentration is envisaged as the concentration at which the
flocs come into mechanical contact. To produce concentrations greater
than the critical, compressive stress must be applied, and the simplest
assumption to make is that the stress required depends only on the
concentration (for a given slurry). Thus, below the critical concentration
the stress is zero while above the critical concentration the stress is a func-
tion of concentration. (In terms of cause and effect, the concentration is
a function of stress, rather than the other way around, but this is no
different analytically.)

However, it is clear that the concentration achieved in compressing
a sludge does not depend only on the applied stress. It will also depend
in a complex way on numerous factors which determine the geometrical
arrangement of the particles. For this reason, care is taken to minimize
disturbance of the samples in compression testing of soils (6), since this
affects the results. The possible large effect of particle arrangement is
easily demonstrated by considering the stacking of spherical particles.

Equal-sized spheres can be stacked with porosity of 0.476 in cubical
packing and 0.260 in rhombohedral packing, and can also be stacked
stably at a porosity at least as high as 0.875 (7). If two columns containing
equal weights (say 10kg) of the same hard, equal-sized spheres are
considered, one stacked in cubical packing and one in rhombohedral,
the compressive stress acting at the bottom of each column will be the
same (neglecting wall effects). However, the particle concentrations are
very different, and clearly the concentration is virtually independent of
the stress (being affected very slightly by the distortion of the spheres
under the weight above), depending almost entirely on the packing
arrangement.
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However, in the case of flocculated suspensions the individual entities
(the flocs) are much more compressible than in the case of separate hard
particles, and the effect of variations in packing arrangement will be
greatly reduced if the packing process is “randomized” in some sense.
The compression of flocs does not involve distortion of the individual
particles to any great extent, but rather overcoming the interparticle
forces in moving the particles closer together. Thus, at least until the
particles are approaching the close-packed condition, it is to be expected
that the concentration achieved will depend primarily on the stress applied,
provided that variations in packing can be minimized. This is borne out
by experimental sedimentation data (8-10).

It is to be expected that slow stirring of a suspension is necessary
to prevent bridge formation and so reduce packing variation effects,
and this is shown by the results of Dell and Keleghan (9). Shannon
et al. (17), settling glass spheres, only obtained a reproducible final con-
centration when the cylinder was vibrated by rapping the side. On the
other hand, Shin and Dick (/0) found concentration to be a function of
stress even in an unstirred suspension. Nevertheless, it seems clear that,
to obtain consistent results, it is necessary to avoid as far as possible effects
due to variations in packing arrangement, and that a large part of the
scatter in experimental results is due to such effects.

Thus, while recognizing its limitations, the assumption that concentra-
tion achieved depends only on stress applied is usually adopted. However,
there is a further factor involved in the compression process, namely a
transient compression resistance, depending on the rate of change of
concentration. Since no process can occur instantaneously, application
of stress to a portion of sludge will not instantaneously produce the
corresponding concentration. There will be a time delay, or dynamic effect,
involved in the process.

While it is not essential to the present argument to determine the
source of the transient compression resistance, at least one effect of this
type is easily identified. As particles are moved closer together (which is
what happens during compression), liquid is “squeezed out” from between
them, and the flow resistance of the liquid gives rise to a force resisting
the compression. This is easily seen in the simple case of two spheres
moving vertically toward each other with equal velocities in a stationary
liquid.

Clearly, each sphere experiences an equal force, upward on the upper,
and downward on the lower. That is, a repulsive force acts between the
spheres. [An analytical expression for this force can be obtained for
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creeping flow (12). The similar situation involving two disks can also be
analyzed (/3).] This force is distinct from the usunal drag force due to
relative motion of particles and liquid. In the present case the velocity of
the two spheres, taken together, is zero, the net force is zero, and the drag
is zero. If the two spheres were moving with unequal velocities, each would
experience a drag force (the same magnitude and sign for each) depending
on their average velocity, and a repulsive force (the same magnitude
but opposite signs) depending on their velocity of approach to each
other.

In a suspension or sludge the situation is obviously much more complex,
but nevertheless it is clear that qualitatively the same effect will occur.
The slurry will exhibit a transient resistance to compression which de-
pends on the rate of increase in concentration (and on the concentration
itself and other slurry properties). Thus, at each point in the suspension,
the compressive stress can be split into two parts, the “‘permanent” or
“static” component, which depends on the concentration, and the
“transient” or ‘“dynamic” component, which depends on the rate of
change of concentration, and is zero when the rate of change of con-
centration is zero. That is,

© = () +7l(0f /1), /] 3

The static stress, 7, is zero below the critical concentration, but the
dynamic stress exists at all concentrations when the concentration is
changing. Obviously, the dynamic compression resistance will be very
small when the particles are far apart, but, small or not, it seems certain
that it exists.

Thus the definitions of “free settling” and ‘“‘compression” need to be
reconsidered. The critical concentration is the concentration below which
no permanent or slatic stress acts. Free settling is settling at concentrations
below the critical, but it no longer implies absence of compressive stress.
In free settling transient compressive stresses can act. In compression,
both permanent* and transient compressive stresses act.

*In referring to the “‘static” or “permanent” component of the compressive stress,
it is not implied, of course, that, on removing the applied stress, the sludge returns to
the critical concentration. Especially for flocculated materials, the compression process
is almost completely inelastic. The existence of a static stress in the compression zone
means that, to reach a given concentration, a certain stress must be applied for sufficient
time. Irrespective of whether this stress is subsequently removed, compression to a
higher concentration requires application of a corresponding higher stress for sufficient
time.
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The existence of transient compression resistance has been recognized
by workers in Soil Mechanics (14). One of the simplest cases to analyze
is one-dimensional consolidation by compressing a layer of soil between
two porous plates. As the soil compresses, liquid expelled from the pores
flows out through the porous plates.

If this process is analyzed (/4), ignoring dynamic compression resistance,
one nevertheless finds that there is a time delay in the compression process.
This is caused by the drag of the liquid as it flows out of the soil layer.
Because of this drag, the applied load does not act immediately throughout
the soil structure, because it is partly balanced by the liquid drag. Only
when the consolidation is complete, and liquid flow has ceased, does the
applied stress act throughout the soil structure. Thus, in this analysis,
the time delay is due to a delay in application of the applied compressive
stress to each plane in the solids structure rather than to a delay in the
response of the structure to the applied stress.

However, in experimental tests on soils in which measurements are
made of the liquid pressure in the pores, it is found in many cases that,
even after the liquid pressure has dropped virtually to zero throughout,
indicating that the applied stress acts throughout the particle structure,
considerable further consolidation occurs (‘“‘secondary consolidation™).
Taylor (/4) pointed out that this indicates a transient effect in the com-
pression process (“plastic time lag” and “‘plastic structural resistance to
compression”).

A similar situation exists in analyzing the more complex process of
gravity consolidation of a sludge (8). Even neglecting dynamic com-
pression effects, the compression process still exhibits a time delay due
to the transient support of part of the weight of the particles by the
liquid displaced upward during the compression process.

THEORETICAL SIGNIFICANCE OF TRANSIENT
COMPRESSION RESISTANCE

Once the existence of compression resistance in “free” settling is ac-
cepted, the anomalies in the theory, demonstrated above, disappear.
The existence of compression resistance means that particles cannot pass
through a concentration discontinuity because this would mean doing
work at an infinite rate in compressing the suspension. (In the original
model of free settling, no work is required for compression, so that sudden
jumps in concentration are possible.) Thus, in the first example, there
will be no discontinuity between free settling and compression zones,
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the whole of the suspension being in compression. The boundary con-
ditions are zero velocity on the container bottom and fixed concentration
at the top of the suspension (since the compressive stress is zero there,
due to the absence of particles above to exert a stress).

In the second (fluidization) example, inclusion of dynamic stress in the
equations removes the instability, as shown in the Appendix. [Although
the complete answer has perhaps still not been obtained, it seems that
the occurrence of aggregative fluidization is, in fact, the result of in-
stability in the flow. However, the instabilities arise from two- or three-
dimensional effects (15, 16). The present discussion has been restricted
to one-dimensional situations which can be achieved by using a high
resistance support plate and a small diameter vessel.]

Having argued on physical grounds that all slurries will exhibit a
transient compression resistance at all particle concentrations, and having
shown that inclusion of transient compression resistance removes anoma-
lies in the theory of free settling, the question which now arises is whether
it is always necessary to take the effect into account.

In the compression concentration range, omitting dynamic stress does
not cause theoretical difficulties, due to absence of boundary conditions
or instability of the equation solutions. However, as shown by data for
soils, some materials do exhibit significant transient compression effects,
and so these should be taken into account for accurate characterization.
Nevertheless, methods for accounting for the effect do not seem to be
well established in Soil Mechanics. The reason for this presumably is
that the inaccuracy in typical experimental data does not warrant the
use of more complex theory. Inaccuracies arise due to the effect of variable
particle packing, as discussed above, which is a basic difficulty in fluid/
particle studies. The same situation applies in sludge thickening, and it
remains to be seen whether it is necessary and practicable to take transient
compression effects into account in data analysis and equipment design.

In the free-settling range, transient compression effects must be taken
into account if the changes occurring in a nonuniform suspension are
being studied, because the equations cannot be solved otherwise. However,
the settling of an initially uniform suspension, starting in free settling,
is a case where the effect can be neglected. The action of the compression
resistance is to prevent the formation of a discontinuity at the top of the
sediment. However, since the transient resistance will certainly be very
small in the free-settling range, a concentration gradient will only extend
for a small distance into the initial-concentration zone. Hence, in this
case, treating the initial suspension as free settling in the old sense, with
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a concentration and velocity discontinuity at the interface with the
sediment, will be a satisfactory approximation.

A similar approximation will be applicable in analyzing steady-state,
continuous thickening. The depth required for thickening to f, will be
very small and negligible, so that the analysis given previously (2) can be
used. There is one difference, however. Whereas it was concluded previ-
ously that the operating line must lie below the flux line in the range
from f, to f,, but not necessarily in the range f; to f,, the existence of
compression resistance at all concentrations indicates that the operating
line must lie below the flux line in the whole range f; to f,.

CONCLUSIONS

Recognition that slurries exhibit an at least transient resistance to
compression at all concentrations removes anomalies in the theory of free
settling. Nevertheless, the effect is expected to be very small in free settling,
and negligible in situations where the free-settling zone is of uniform
concentration, so that the concentration gradient will be limited to a
narrow zone above the sediment. In compression, transient compression
resistance is usually neglected, compared to the static resistance, but it
remains to be determined if this is always a satisfactory approximation.

APPENDIX. FLUIDIZATION STABILITY ANALYSIS

Dynamic Stress Omitted

Using a Lagrangian spatial coordinate, s, based on the particle motion,
and dilution, r, rather than particle volume fraction, the one-dimensional
material- and momentum-balance equations are (J)

(&)~ (), ®

and Eq. (2), and the boundary conditionis v = 0 ats = S§.

In the situation being considered, the liquid upflow is held constant,
so that volumetric flux, ¢,, is constant with respect to both ¢ and s. Thus
v can be replaced by u in Eqgs. (4) and (2). At steady state at the given
upflow rate, u and r are uniform and equal to # and F, respectively. Line-
arizing Eqs. (4) and (2) for small deviations #’' and r' of u and r from
the steady-state values gives

(@)~ (%), ®
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and

@_, — ’ br 6
o ), au' + br 6)

where a and b are positive constants. Taking Laplace transforms with
respect to ¢ (17):

pR — (0, 5) = dUJds ¢
and
pU= —alU + bR ®)

taking the initial condition to be particles stationary (¥ = i) but dilution
displaced from the steady-state value. Eliminating R between Eqs. (7)
and (8):

~b _dU C U br' (0, 5)
p(p + a) ds ~p(p +a)

The solution of this ordinary differential equation depends on the initial
concentration-deviation distribution, #'(0, s). The simplest case is r' =
constant = A4, say. The solution of Eq. (9) is then:

bA
WrEDL

satisfying the condition ¥’ =0 ats = §.

The inverse Laplace transform of Eq. (10) gives the variation of v’
as a function of s and ¢. While this inversion cannot be carried out by the
usual methods, the stability of the solution can be determined from ex-
amination of the transform. The presence of the factor exp [—p*(S — 5)/b]
in the transform of U indicates poles in the right half of the complex plane
(17) and, hence, instability. {Exp[—p*(S — s)/b] has two infinities of
poles on lines parallel to the real axis at infinity.} Since the equations
are linear, this result is unaffected by the choice made of the initial con-
centration-deviation function, #'(0, s).

®)

—exp[~-p(p + a)(S — 5)/b}} (10

Dynamic Stress Included

When dynamic compressive stress, t,, is included in the analysis, Eq.

(2) is replaced by
ou\ _ oty
(i), = 5= (3), ay
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7, is a function of r and (0r/0t), [= (Ou/ds),]. Since it is zero when (9r/dt),
is zero, and (0r/0t), is zero at steady state, the linearized expression for

74 takes the form
or' ou’
= —pc\ 5| = —pel 5o 12)
s t

where ¢ is a positive constant. [Although it is not relevant to the present
argument, Eq. (12) is, in fact, the expected general form of the equation
for 7,4, except that ¢ is a function of f rather than a constant. This is the
form which has been suggested in Soil Mechanics (18).]

Thus the linearized equations are Eq. (5) and

éf{ — 4 b 4 gffé 13
ar ), = T et A a7, (13)

The additional boundary condition required is (6u'/ds), =0 at s =0
(constant concentration at the top of the suspension).
Proceeding as above, the equation obtained after taking Laplace
transforms and eliminating R is
—c d*U b dU _br'(0,s)

p+ads® p(p+a)ds + U= p(p + a) (14)

For #'(0,s) = A = constant, the solution for U, satisfying the two
boundary conditions, is

bA |: _ome™ — mze""s:i 15)

T p(p + a) mye™ — mye™S

: 4cp?
e m, = _95_b<1 + \/1 N _CP_UQQ)
cp

where

X b2

It is not difficult to show that this expression for U contains no poles
in the right half of the complex plane, and so the solution is stable.

SYMBOLS

The positive direction is downward for all vector quantities.

a linearization constant = —(JF,/du),/p, sec™!
A amplitude of initial dilution disturbance, dimensionless
b linearization constant = (0F,/or),/p, m/sec?
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Greek

1. D.C.
2. D.C

linearization constant = —(dt,/d(dr/dt),),/p, m?/sec

particle concentration, volume fraction, dimensionless

critical particle concentration

feed particle concentration

underflow particle concentration

liquid drag force on the particles, per unit volume of particles,
N/m?

g(p — p;) = net gravitational force, per unit volume of
particles, N/m>

acceleration due to gravity, m/sec?

expression involved in solution of Eq. (14), m~!

Laplace transform variable, sec™!

particle dilution = 1/f, dimensionless

steady-state value of r

deviation of r from 7

Laplace transform of r’, sec

volume of particles per unit cross-sectional area, below a
reference plane moving with the particles, m

total volume of particles in the system per unit cross-sectional
area, m

time, sec

velocity of particles, relative to slurry volume-average velocity
= v — ¢, mfsec

steady-state value of u

deviation of u from &

Laplace transform of «', m

velocity of particles, relative to container, m/sec

particle density, kg/m?

liquid density, kg/m?

interparticle compressive stress, based on total cross-sectional
area, N/m?

static component of 7

dynamic component of 7

total volumetric flux = volume-average velocity, m/sec
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